THE CHINESE UNIVERSITY OF HONG KONG
MATH2230 Midterm 2 solution
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Problem 1. If z € {z € C||z| > 3}, then o is analytic for all s € {z € C||z| < 3}.
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Hence by Cauchy-Goursat theorem,
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Ifz€{z¢ (C’ 2| < 3}, let f(s) =s° + 3s + 1. By generalized Cauchy integral formula,
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Problem 3 (i).
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Since lim e In (1) = 0, hence lim f(z) dz = 0.
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Problem 3 (iii). Since zy # 0, we can choose € small enough such that B.(z) N {0} = @.
Therefore, f(z) is analytic in B.(zp). By Cauchy integral formula,
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Problem 3 (ii).
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Since |f(z)| <In (—) in 2, if |z| = 1, then we have f(z) =0 and
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By (ii), we have

By taking ¢ — 0 and (i), we have f(z) = 0.



